Mesoscale computer modeling of lipid-DNA complexes for gene therapy.
نویسندگان
چکیده
We report on a molecular simulation method, which captures the self-assembly of cationic lipid-DNA (CL-DNA) gene delivery complexes. Computational efficiency required for large length- and time-scale simulations is achieved through a coarse-grained representation of the intramolecular details and via intermolecular potentials, which effectively mimic the hydrophobic effect without an explicit solvent. The broad utility of the model is illustrated by demonstrating excellent agreement with x-ray diffraction experimental data for the dependence of the spacing between DNA chains on the concentration of CLs. At high concentrations, the large electrostatic pressure induces the formation of pores in the membranes through which the DNA molecules may escape the complex. We relate this observation to the origin of recently observed enhanced transfection efficiency of lamellar CL-DNA complexes at high charge densities.
منابع مشابه
Surface Recognition and Complexations Between Synthetic Poly(ribo)nucleotides and Neutral Phospholipids and Their Implications in Lipofection
Thermodynamic features related to preparation and use of self-assemblies formed between multilamellar and unilamellar zwitterionic liposomes and polynucleotides with various conformation and sizes are presented. The divalent metal cation or surfactant-induced adsorption, aggregation and adhesion between single- and double-stranded polyribonucleotides and phosphatidylcholine vesicles was followe...
متن کاملSurface Recognition and Complexations Between Synthetic Poly(ribo)nucleotides and Neutral Phospholipids and Their Implications in Lipofection
Thermodynamic features related to preparation and use of self-assemblies formed between multilamellar and unilamellar zwitterionic liposomes and polynucleotides with various conformation and sizes are presented. The divalent metal cation or surfactant-induced adsorption, aggregation and adhesion between single- and double-stranded polyribonucleotides and phosphatidylcholine vesicles was followe...
متن کاملComputational and analytical modeling of cationic lipid-DNA complexes.
We present a theoretical study of the physical properties of cationic lipid-DNA (CL-DNA) complexes--a promising synthetically based nonviral carrier of DNA for gene therapy. The study is based on a coarse-grained molecular model, which is used in Monte Carlo simulations of mesoscopically large systems over timescales long enough to address experimental reality. In the present work, we focus on ...
متن کاملEvaluation of Cell Penetrating Peptide Delivery System on HPV16E7 Expression in Three Types of Cell Line
Background: The poor permeability of the plasma and nuclear membranes to DNA plasmids are two major barriers for the development of these therapeutic molecules. Therefore, success in gene therapy approaches depends on the development of efficient and safe non-viral delivery systems. Objectives: The aim of this study was to investigate the in vitro delivery of plasmid DNA encoding HPV16 E7 gene...
متن کاملModeling of cationic lipid-DNA complexes.
Cationic lipid-DNA complexes, often referred to as lipoplexes, are formed spontaneously in aqueous solutions upon mixing DNA and liposomes composed of cationic and nonionic lipids. Understanding the mechanisms underlying lipoplex formation, structure and phase behavior is crucial for their further development and design as non-viral transfection vectors in gene therapy. From a physical point of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 96 1 شماره
صفحات -
تاریخ انتشار 2006